منابع مشابه
The Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملComputing Mixed Discriminants , Mixed Volumes
We construct a probabilistic polynomial time algorithm that computes the mixed discriminant of given n positive definite n × n matrices within a 2O(n) factor. As a corollary, we show that the permanent of an n×n nonnegative matrix and the mixed volume of n ellipsoids inRn can be computed within a 2O(n) factor by probabilistic polynomial time algorithms. Since every convex body can be approximat...
متن کاملJoint segmentation of multivariate Gaussian processes using mixed linear models
The joint segmentation of multiple series is considered. A mixed linear model is used to account for both covariates and correlations between signals. An estimation algorithm based on EM which involves a new dynamic programming strategy for the segmentation step is proposed. The computational efficiency of this procedure is shown and its performance is assessed through simulation experiments. A...
متن کاملMixed Volumes of Hypersimplices
In this paper we consider mixed volumes of combinations of hypersimplices. These numbers, called “mixed Eulerian numbers”, were first considered by A. Postnikov and were shown to satisfy many properties related to Eulerian numbers, Catalan numbers, binomial coefficients, etc. We give a general combinatorial interpretation for mixed Eulerian numbers and prove the above properties combinatorially...
متن کاملBezout Inequality for Mixed Volumes
In this paper we consider the following analog of Bezout inequality for mixed volumes: V (P1, . . . , Pr,∆ )Vn(∆) r−1 ≤ r ∏ i=1 V (Pi,∆ ) for 2 ≤ r ≤ n. We show that the above inequality is true when ∆ is an n -dimensional simplex and P1, . . . , Pr are convex bodies in R . We conjecture that if the above inequality is true for all convex bodies P1, . . . , Pr , then ∆ must be an n -dimensional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 1987
ISSN: 0091-1798
DOI: 10.1214/aop/1176992271